skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, S H"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT It is more than 40 years since the era of transgenic plants began and more than 30 years after the cloning of the first plant disease resistance genes. Despite extensive progress in our mechanistic understanding and despite considerable sustained efforts in the commercial, nonprofit, academic and governmental sectors, the prospect of commercially viable plant varieties carrying disease resistance traits endowed by biotechnological approaches remains elusive. The cost of complying with the regulations governing the release of transgenic plants is often cited as the main reason for this lack of success. While this is undeniably a substantial hurdle, other transgenic traitshavebeen successfully commercialised. We argue that a significant portion of the challenges of producing crop varieties engineered for disease resistance is intrinsic to the trait itself. In this review, we briefly discuss the main approaches used to engineer plant disease resistance. We further discuss possible reasons why they have not been successful in a commercial context and, finally, we try to derive some lessons to apply to future efforts. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Yuan, Y (Ed.)
    Abstract Disease resistance in plants can be conferred by single genes of large effect or by multiple genes each conferring incomplete resistance. The latter case, termed quantitative resistance, may be difficult for pathogens to overcome through evolution due to the low selection pressures exerted by the actions of any single gene and, for some diseases, is the only identified source of genetic resistance. We evaluated quantitative resistance to 2 diseases of maize in a biparental mapping population as well as backcrosses to both parents. Quantitative trait locus analysis shows that the genetic architecture of resistance to these diseases is characterized by several modes of gene action including additivity as well as dominance, overdominance, and epistasis. Heterosis or hybrid vigor, the improved performance of a hybrid compared with its parents, can be caused by nonadditive gene action and is fundamental to the breeding of several crops including maize. In the backcross populations and a diverse set of maize hybrids, we find heterosis for resistance in many cases and that the degree of heterosis appears to be dependent on both hybrid genotype and disease. 
    more » « less
    Free, publicly-accessible full text available March 24, 2026
  3. The southern corn leaf blight epidemic of 1970 caused estimated losses of about 16% for the U.S. corn crop, equivalent to about $8 billion in current terms. The epidemic was caused by the prevalence of Texas male sterile cytoplasm ( cms-T), used to produce most of the hybrid corn seed planted that year, combined with the emergence of a novel race of the fungus Cochliobolus heterostrophus that was exquisitely virulent on cms-T corn. Remarkably, the epidemic lasted just a single year. This episode has often been portrayed in the literature and textbooks over the last 50 years as a catastrophic mistake perpetrated by corn breeders and seed companies of the time who did not understand or account for the dangers of crop genetic uniformity. In this perspective article, we aim to present an alternative interpretation of these events. First, we contend that, rather than being caused by a grievous error on the part of the corn breeding and seed industry, this epidemic was a particularly unfortunate, unusual, and unlucky consequence of a technological advancement intended to improve the efficiency of corn seed production for America's farmers. Second, we tell the story of the resolution of the epidemic as an example of timely, meticulously applied research in the public sector for the public good. 
    more » « less
  4. Studies of plant–microbe interactions using synthetic microbial communities (SynComs) often require the removal of seed-associated microbes by seed sterilization prior to inoculation to provide gnotobiotic growth conditions. Diverse seed sterilization protocols have been developed and have been used on different plant species with various amounts of validation. From these studies it has become clear that each plant species requires its own optimized sterilization protocol. It has, however, so far not been tested whether the same protocol works equally well for different varieties and seed sources of one plant species. We evaluated six seed sterilization protocols on two different varieties (Sugar Bun and B73) of maize. All unsterilized maize seeds showed fungal growth upon germination on filter paper, highlighting the need for a sterilization protocol. A short sterilization protocol with hypochlorite and ethanol was sufficient to prevent fungal growth on Sugar Bun germinants; however a longer protocol with heat treatment and germination in fungicide was needed to obtain clean B73 germinants. This difference may have arisen from the effect of either genotype or seed source. We then tested the protocol that performed best for B73 on three additional maize genotypes from four sources. Seed germination rates and fungal contamination levels varied widely by genotype and geographic source of seeds. Our study shows that consideration of both variety and seed source is important when optimizing sterilization protocols and highlights the importance of including seed source information in plant–microbe interaction studies that use sterilized seeds. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license . 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  5. McIntyre, L (Ed.)
    Abstract Foliar diseases of maize are among the most important diseases of maize worldwide. This study focused on 4 major foliar diseases of maize: Goss's wilt, gray leaf spot, northern corn leaf blight, and southern corn leaf blight. QTL mapping for resistance to Goss’s wilt was conducted in 4 disease resistance introgression line populations with Oh7B as the common recurrent parent and Ki3, NC262, NC304, and NC344 as recurrent donor parents. Mapping results for Goss’s wilt resistance were combined with previous studies for gray leaf spot, northern corn leaf blight, and southern corn leaf blight resistance in the same 4 populations. We conducted (1) individual linkage mapping analysis to identify QTL specific to each disease and population; (2) Mahalanobis distance analysis to identify putative multiple disease resistance regions for each population; and 3) joint linkage mapping to identify QTL across the 4 populations for each disease. We identified 3 lines that were resistant to all 4 diseases. We mapped 13 Goss’s wilt QTLs in the individual populations and an additional 6 using joint linkage mapping. All Goss’s wilt QTL had small effects, confirming that resistance to Goss’s wilt is highly quantitative. We report several potentially important chromosomal bins associated with multiple disease resistance including 1.02, 1.03, 3.04, 4.06, 4.08, and 9.03. Together, these findings indicate that disease QTL distribution is not random and that there are locations in the genome that confer resistance to multiple diseases. Furthermore, resistance to bacterial and fungal diseases is not entirely distinct, and we identified lines resistant to both fungi and bacteria, as well as loci that confer resistance to both bacterial and fungal diseases. 
    more » « less
  6. Bacterial leaf streak (BLS) of maize is an emerging foliar disease of maize in the Americas. It is caused by the gram-negative nonvascular bacterium Xanthomonas vasicola pv. vasculorum. There are no chemical controls available for BLS, and thus, host resistance is crucial for managing X. vasicola pv. vasculorum. The objective of this study was to examine the genetic determinants of resistance to X. vasicola pv. vasculorum in maize, as well as the relationship between other defense-related traits and BLS resistance. Specifically, we examined the correlations among BLS severity, severity for three fungal diseases, flg-22 response, hypersensitive response, and auricle color. We conducted quantitative trait locus (QTL) mapping for X. vasicola pv. vasculorum resistance using the maize recombinant inbred line population Z003 (B73 × CML228). We detected three QTLs for BLS resistance. In addition to the disease resistance QTL, we detected a single QTL for auricle color. We observed significant, yet weak, correlations among BLS severity, levels of pattern-triggered immunity response and leaf flecking. These results will be useful for understanding resistance to X. vasicola pv. vasculorum and mitigating the impact of BLS on maize yields. 
    more » « less
  7. Schornack, Sebastian (Ed.)
    The common rust disease of maize is caused by the obligate biotrophic fungusPuccinia sorghi. The maizeRp1-Dallele imparts resistance against theP.sorghiIN2 isolate by initiating a defense response that includes a rapid localized programmed cell death process, the hypersensitive response (HR). In this study, to identify AvrRp1-D fromP.sorghiIN2, we employed the isolation of haustoria, facilitated by a biotin-streptavidin interaction, as a powerful approach. This method proves particularly advantageous in cases where the genome information for the fungal pathogen is unavailable, enhancing our ability to explore and understand the molecular interactions between maize andP.sorghi. The haustorial transcriptome generated through this technique, in combination with bioinformatic analyses such as SignalP and TMHMM, enabled the identification of 251 candidate effectors. We ultimately identified two closely related genes,AvrRp1-D.1andAvrRp1-D.2, which triggered anRp1-D-dependent defense response inNicotiana benthamiana.AvrRp1-D-inducedRp1-D-dependent HR was further confirmed in maize protoplasts. We demonstrated that AvrRp1-D.1 interacts directly and specifically with the leucine-rich repeat (LRR) domain of Rp1-D through yeast two-hybrid assay. We also provide evidence that, in the absence of Rp1-D, AvrRp1-D.1 plays a role in suppressing the plant immune response. Our research provides valuable insights into the molecular interactions driving resistance against common rust in maize. 
    more » « less
    Free, publicly-accessible full text available November 8, 2025
  8. Many correlations exist between spectral reflectance or transmission with various phenotypic responses from plants. Of interest to us are metabolic characteristics, namely, how the various polarimetric components of plants may correlate to underlying environmental, metabolic, and genotypic differences among different varieties within a given species, as conducted during large field experimental trials. In this paper, we overview a portable Mueller matrix imaging spectropolarimeter, optimized for field use, by combining a temporal and spatial modulation scheme. Key aspects of the design include minimizing the measurement time while maximizing the signal-to-noise ratio by mitigating systematic error. This was achieved while maintaining an imaging capability across multiple measurement wavelengths, spanning the blue to near-infrared spectral region (405–730 nm). To this end, we present our optimization procedure, simulations, and calibration methods. Validation results, which were taken in redundant and non-redundant measurement configurations, indicated that the polarimeter provides average absolute errors of (5.3±2.2)×10−3and (7.1±3.1)×10−3, respectively. Finally, we provide preliminary field data (depolarization, retardance, and diattenuation) to establish baselines of barren and non-barrenZea maizehybrids (G90 variety), as captured from various leaf and canopy positions during our summer 2022 field experiments. Results indicate that subtle variations in retardance and diattenuation versus leaf canopy position may be present before they are clearly visible in the spectral transmission. 
    more » « less
  9. Abstract The pattern‐triggered immunity (PTI) response is triggered at the plant cell surface by the recognition of microbe‐derived molecules known as microbe‐ or pathogen‐associated molecular patterns or molecules derived from compromised host cells called damage‐associated molecular patterns. Membrane‐localized receptor proteins, known as pattern recognition receptors, are responsible for this recognition. Although much of the machinery of PTI is conserved, natural variation for the PTI response exists within and across species with respect to the components responsible for pattern recognition, activation of the response, and the strength of the response induced. This review describes what is known about this variation. We discuss how variation in the PTI response can be measured and how this knowledge might be utilized in the control of plant disease and in developing plant varieties with enhanced disease resistance. 
    more » « less